Pitfalls of JESS for Dynamic Systems

Rajkumar Thirumalainambi
PSGS @ NASA Ames Research Center
Mail Stop 269-2 Moffett Field, California 94035 USA
rajkumar @mail.arc.nasa.gov

Abstract

We considered different varieties of inference engines for
a sub-system of Mission Control Technologies (MCT) being
developed at NASA Ames Research center. One inference
engine, Jess, is attractive due to its benchmark results, Java
API, and being a stable software product. The outstand-
ing issues of Jess with respect to MCT are the way its Java
Bean defines ’defclass’ and slots, and converting between
or mapping to MCT interfaces. The slot names and ’def-
class’ are static in Jess rules, and at run time in a given
knowledgebase it cannot be modified. Distributing Jess to
outside federal agencies and licensing is another issue.

1. Introduction

In modeling systems, knowledge can be represented in
many ways. Each system typically has a distinction be-
tween data and rules. Data is information written in one
language (sometimes very simply without negation like in
a basic Resource Description Framework (RDF) [3]). The
rules control the inference steps which the inference engine
makes. The rules are written in a restricted language so as to
preserve the computability property with validation of facts.
A real inference system can work backwards or forwards
(or both). We looked at 20 different inference engines from
academic to industrial types based on operating system, ap-
plication programming interfaces (APIs) that support spe-
cific languages and dependencies, and supporting ontology
based systems. A robust inference engine should support
general purpose as well semantic based systems, and specif-
ically for MCT requirements, inference engines should sup-
port RDF and web ontology language (OWL) semantic lan-
guages through suitable translators.

The MCT Composition engine uses an inference engine,
rule base, rule constructor, translator, inference engine se-
lector and an adapter to applications. In this paper, we dis-
cuss the inference engines and rule formats supported by
the inference engine. The inference engines speed is a ma-

jor factor during deployment in real time missions. The in-
ference engines can be invoked locally or remotely from a
central server with local or server based knowledgebases.
The MCT’s core inference engine provides a declarative
programming language and is flexible enough to match the
semantics of MCT application and ontology models using
suitable interfaces. Ontologies store the concepts used to
describe the application information. Overall MCT lever-
ages many emerging technologies for constructing a unique
plug-n-play component architecture. The MCT composi-
tion engine with suitable inference engines provides a pro-
grammatic environment for RDF, OWL and evolving on-
tology languages using a rule based inference engine. In
section 2, I discuss the overall requirements of MCT com-
position engine. Section 3 overviews Jess capabilities, and
section 4 discusses the integration of Jess with MCT.

2. Mission Control Technology (MCT) Re-
quirements

The Mission Control Technologies project is developing
a component based reusable architecture which can be ap-
plied for multiple missions across NASA. The core require-
ments of MCT are:

e Reuse of components in many contexts

e Dynamic addition of attributes and behaviors to com-
ponents

e Autonomous state change notification of components
e API domain independence
e Lifecycle management

Based on the requirements, MCT started developing a
component based infrastructure with suitable subsystems.
The details of MCT are given in reference [S]. One MCT
subsystem is the composition engine with its multiple in-
ference engines for decision making in composing the User

Interface (UI) and other processes. MCT minimum require-
ments of inference engines, rules expressions based on on-
tology, translators, and necessary APIs to connect applica-
tions are as follows:

e Support forward chaining, backward chaining infer-
ence based on RETE algorithm [6]

e Frame-based approach to represent knowledge

e Support RDF, OWL, DARPA agent markup language
(DAML) with logical validation

e Support server and client based inference

e Multi-ontology reasoning with a way of combining
knowledgebases

e Handle high volumes of rules

e Offer a collaborative environment for model review
and refinement of rules dynamically

e Reconfigure rule engine dynamically (user can select
any inference engine)

e Manage dynamic changes in rules autonomously in
working memory

e Versioning of rules and conflict resolution of policies
(rules)

e User interfaces for validation of rules, editing of rules,
querying rules (Tools)

e Statistics of execution of inference which characterize
the health of inference engine (Tools)

e Advanced search capability with suitable filters in rule
base (Query Tools)

e Runtime management of inference engine and reason-
ing mechanism

Based on the above requirements, the initial criteria for
selecting an inference engine is based on performance (stan-
dard bench mark test). In Table 1, the comparative results
are given for the Manners 128 standard benchmark test per-
formed using ILOG Jrules 5.01 , OPSJ 6.0, and Jess 6.1, (an
inference engine from Sandia National Laboratory [1]). In
figure 1, a different benchmark test between Jess, Microsoft
Business Rule Engine, and Drools using 10000 rules [7] and
time in milliseconds to execute the rules are shown [8]. All
tests were conducted with Microsoft windows XP on the
same machine (w.r.t Figure 1). Based on the initial per-
formance results, Jess and Drools are promising inference
engines considered for MCT composition engine. Accord-
ing to table 1, Jess did worse than Jrules w/hash. Jrules is

a commercial product whereas Jess can be used for federal
research and mission purposes without any cost.

In comparing features, Drools uses a natural language
based rule set, editing, and development (drl and dsl files),
whereas Jess requires specific syntax to represent rules
(JessML or clips) [4]. Drools and Jess support facts which
can be expressed in standard Java class and methods. Jess
and Drools follow the Java Bean approach to insert Java
objects in working memory. Java Beans properties are sim-
ilar to the list of slots in the facts of Jess and Drools. A Java
Bean property is a pair of methods that express in a standard
way String name ’value’ via String getValue() and void set-
Value(String str). The get method is used to read the value
of the property, while the set method changes the variable
to a specific value.

Table 1. Benchmark results of JRULES (ILOG)
and JESS

Benchmark Manners 128 standard benchmark test
Platform Windows Mac Dual Dual . 2x
XP 1GHz G4 SPARC Win Serever Mac G5
CPU 1.9 1.0 1.0 1.0 2.0

Speed (GHz)

JRULES 5.0.1 89.00 131.00 73.67 73.68 56.80
no hash
(milliseconds)

JRULES 5.0.1 3.70 8.70 4.66 9.60 3.45
with hash
OPSJ 6.0 7.93 18.35 9.04 19.58 nas
JESS 6.1 p6,p7 66.50 164.00 73.20 na na

The java.beans API includes a class named Introspec-
tor that can check Java Beans and find properties defined
according to get/set naming convention. Jess and Drools
use Introspector to generate deftemplate which can serve as
facts. Since Jess and Drools are well supported and stable
products, we progressed to implement Jess as an initial in-
ference engine for MCT composition engine. The specific
capabilities of the Jess inference engine are discussed in the
next section.

3. JESS Capabilities

Jess offers a scripting language to implement a knowl-
edge base which is very similar to C Language Integrated
Production System (CLIPS) [2]. It uses first order logic
and supports both forward and backward chaining. Back-
ward chaining lends the system a “goal seeking” behavior,

Relative comparison of performance

10 ——
s

‘/_M—J" 3 ——Jess
: —-1{5-BRE

Dranls

Units of Timea
R —
=
!

)

1000 2000 3000 4000 5000 G000 7000 8OO0 A000- 10000
Number of Rules

Figure 1. Benchmark results of JESS and
DROOLS.

whereas forward chaining looks for satisfied rules on its
own after some facts are known. It can be used in a mul-
tithreaded environment and uses the RETE algorithm for
optimized speed. The jess.Rete class synchronizes inter-
nally in many ways for efficiency. It can directly manipulate
and reason about Java objects. It offers an built-in transla-
tor to translate a CLIPS format knowledge base to the Jess
ML format, which resembles RuleML and XML formats.
It offers to divide and conquer a large knowledge base us-
ing a defmodule concept. The defmodule allows managing
a knowledge base in such way that it can access a specific
knowledge base using focusing individual modules.

Jess’s working memory is stored in a complex data struc-
ture with multiple indexes, so that searching the working
memory is extremely fast. There are two ways in which
facts can be represented in working memory: (i) Unordered
facts (ii) Ordered facts. An unordered fact is like a row in
a relational database table. The assertion of a slot can be
in any order and can be used to represent any general sce-
nario. An ordered fact lacks the structure of named fields;
in short, it is a flat list. A form of unordered facts is called
shadow facts which represent Java objects. The working
memory representation of a Java Bean can be either static or
dynamic. In dynamic cases, the Java Bean property listener
is implemented to note any changes for that specific Java
object. Shadow facts always have slot values for “class”,
which is the instance of java.lang.Class representing the
class of the backed Java object, and "OBJECT”, which is
a reference to the backed Java object itself. In MCT com-
position engine, shadow facts will be used with the ’ICom-
ponent’ interface in a dynamic way. The IComponent is
the central interface for MCT. Jess supports interfaces and
classes to represent facts.

Jess offers conditional logic checking on the left hand
side of a rule. It allows multiple nesting of boolean and
conditional logic with salient features to execute rules. De-

fquery is a special kind of rule with no right hand side. The
query provides matching facts in the form of an iterator.
Jess provides a user function interface and user package to
define user defined functions. The user package can have
multiple user defined functions. Most of the Jess API is de-
signed as user functions and user packages. These functions
allow the user to add more application oriented functions.
The user can use the functions in rules. Jess can be used
in a RMI based rule server by creating suitable stubs and a
skeleton. Drools is also similar to Jess in many ways. With
respect to drools, facts are objects (Java beans) from the ap-
plication that are being asserted into the working memory.
Strings and other classes without getters and setters are not
valid facts and can’t be used with Field Constraints which
rely on the Java Bean standard of getters and setters to in-
teract with the object.

4. Integrating JESS with MCT

In MCT, many components are developed to support any
mission. The components are represented by representation
and suitable role. Depending on the role, the composition
can take place. The composition policies are the knowledge
base, which has been constructed using the IComponent in-
terface. MCT does not follow the strict Java Bean standards
for get and put (instead of set). In the IComponent inter-
face, getter methods have arguments which enable dynamic
capability, whereas in the standard Java bean approach, get-
ter methods have null arguments. An example of the getter
and setter methods of Icomponent is shown below:

public List getValueNotes(String fieldName, Object
fieldValue, String noteName);

public void putFacetValues(String fieldName, String
facetName, List facetValues);

Since MCT has many components with multiple roles,
getter methods need arguments to access a specific compo-
nent within a dynamic environment. The behavior of com-
ponents is controlled by the IActor interface. Since MCT
does not strictly adhere to Java Bean standards, each method
has to be wrapped into a specific Java bean method to ac-
cess the facts and slots. Jess can not construct rules based
on MCT classes directly but rather through MCT wrapper
classes which leads to the slower performance. The number
of rules in the knowledge base will exponentially increase
due to the roles of components in MCT. In MCT, the names
of the fields of a Java class are runtime variables which con-
tribute its dynamism. Unfortunately, the Jess template is
like a Java class; its slot names are fixed when it is defined
and cannot be changed.

Since MCT provides the infrastructure, a user can de-
fine new field names for specific applications and dynam-
ically, but it does not get reflected in the Jess knowledge
base. As long as rules are static and the domain is static, the

Jess knowledge base can be constructed initially and can
serve the purpose of inference. In dynamic environments
like MCT, the rules will not change autonomously or cannot
be constructed. This can be done by a learning mechanism
of all components interactions over a period of time, but this
option may not be very efficient with respect to MCT. The
integration of Jess to do dynamic composition and dynamic
rule generation needs more work, and it will probably re-
quire an architectural change in Jess and its parser.

5 JESS Parser

The Jess parser strictly follows the Jess scripting lan-
guage syntax which is defined in CLIPS syntax. Any con-
version of the Jess rule format requires a significant amount
of effort in terms of computing power. At run time specific
Jess knowledge base can not be modified or changed during
fact matching. Salient values can be integers, global vari-
ables, or function calls. In the case of a tie in the salient val-
ues of rules, two different conflict resolution strategies are
currently available (CLIPS has seven): depth (LIFO) and
breadth (FIFO). In either case, if several rules are activated
simultaneously (i.e. by the same fact assertion event) the
order in which these several rules fire is unspecified. The
user has to implement a specific strategy to address salient
features, when several rules fire. In the jess.Rete class, the
reset function will not remove shadow facts from working
memory. Shadow facts must be retracted explicitly to reset
the engine with new facts. Shadow facts cannot be asserted.
Instead, the backed Java object must first be constructed and
then added to working memory as a fact using ’definstance’.
Jess inherits lot of Java, but it is not an object oriented sys-
tem. Traditional expert systems work by matching patterns,
where rules are static. Converting traditional inference en-
gines to adapt to dynamic MCT requirements needs more
investigation.

6 Conclusion

MCT requirement for an inference engine should han-
dle dynamism in rules and variables and dynamic facts han-
dling. The reason for selecting Jess was due to bench mark
results and stable Java API. The key issue regarding its
static nature of rules and Java Bean approach of inserting
facts to working memory does not meet MCT requirements
to operate in a dynamic environment. A dedicated infer-
ence engine is planned to be constructed for MCT to handle
dynamism and the research is underway.

Acknowledgement

The author would like to express sincere thanks to Mr.
Jay Trimble, Code TI for funding and necessary support to

carry out this research. The author would like to acknowl-
edge useful comments, suggestions and discussions from
Dr. Nikunj Oza and Mr. Francis Enomoto NASA Ames
Research Center.

References

[1] http://www.kbsc.com/
Performance2000-2005.x1s.

[2] Clips reference manual volume i, basic program-
ming guide. http://www.ghg.net/clips/
download/documentation/bpg.pdfversioné6.
23, January$31°{st}$2005.

[3] Rdf. http://www.w3.0rg/RDF.

[4] F. EJ. lJess, the rule engine for java platform. http:
//herzberg.ca.sandia.gov/Jjess/docs/70,
version7.0a5,DraftFebruary, $2°{nd}$, 2005.

[5] S. Fonseca. Engineering degrees of agency. In Fifth Inter-
national Workshop on Software Engineering for large scale
multi-agent systems (SELMAS), Shanghai, China, May 2006.

[6] R. Forgy C. L. A fast algorithm for the many pattern/many
object pattern match. Artificial Intelligence, 19(1982), 1991.

[71 M. Proctor. Drools-jboss rules. http://labs. jboss.
com/portal/jbossrules/docs.

[8] C. Young. Microsoft’s rule engine scalability re-
sults - a comaprison with jess and drools, 2004.
http://geekswithblogs.net/cyoung/
articles/54022.aspx.

